MATH 2060B: Mathematical Analysis II

Mid-Term Test

Answer ALL Questions 20 points for each question

05 March, 2017. 8:30-10:00

- 1. Let $f:(a,b) \to \mathbb{R}$ be a C^2 -function defined on (a,b).
 - (i) Show that if the second derivative $f^{(2)}(x) > 0$ for all $x \in (a, b)$, then f is a strictly convex function on (a, b), that is, $tf(x) + (1 t)f(y) \ge f(tx + (1 t)y)$ for all $x, y \in (a, b)$ with $x \ne y$ and $t \in (0, 1)$.
 - (ii) Show that $x \log x + y \log y \ge (x+y) \log \frac{x+y}{2}$ for all x > 0 and y > 0 with $x \ne y$.
 - (iii) Show that $\frac{1}{2}(x^p + y^p) \le \left(\frac{x+y}{2}\right)^p$ for x > 0, y > 0 and 0 .
- 2. (i) Let f be a differentiable function defined on a bounded interval (a, b). Show that if f is unbounded, then so is its derivative f'.
 - (ii) Does the converse of (i) hold?
 - (iii) If the assumption of boundedness of (a, b) is removed in (i), does (i) still hold?
- 3. Fix a sequence (x_n) in [0, 1]. For each $n = 1, 2..., \text{ let } f : [0, 1] \to [0, 1]$ be a function defined by $f_n(x) = 1$ for $x \in [0, 1] \setminus \{x_1, ..., x_n\}$; otherwise, $f_n(x) = 0$.
 - (i) Show that f_n is a Riemann integrable function over [0, 1].
 - (ii) Find $\int_0^1 f_n(x) dx$.
 - (iii) Suppose that $f(x) = \lim_{n \to \infty} f_n(x)$ exists for all $x \in [0, 1]$. Is the function f integrable over [0, 1]?

End